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APPLICATION OF LAX'S FINITE-DIFFERENCE METHOD TO 

NONEQUILIBRIUM HYPERSONIC FLOW PROBLEMS 

By Fred R. DeJarnette 
Langley Research Center 

SUMMARY 

The finite-difference method developed by P. D. Lax for unsteady flows is applied 
to the steady-state equations for the supersonic region of inviscid flows past two- 
dimensional and axisymmetric bodies. A diatomic gas subject to nonequilibrium vibra- 
tions and dissociation is considered. As a consequence of Lax's finite-difference scheme, 
an artificial viscosity is implicitly introduced. This scheme allows the computations to 
proceed downstream of an initial data line as if no shock wave were present at all. The 
shock wave appears in the solution, however, smeared over several  mesh spaces while it 
accurately gives the proper jump conditions across the shock. 

A new difference scheme is developed for the body points that is more accurate 
than previously used extrapolation schemes and reflection principles. The numerical 
results of the present method a r e  shown to compare favorably with the methods of char- 
acterist ics and integral relations for frozen flow over a cone-parabolic-arc-cylinder, 
vibrational nonequilibrium flow over a wedge, and chemical nonequilibrium flow of 
Lighthill's "ideal dissociating gas" over a wedge. 

INTRODUCTION 

The numerical solution of the inviscid flow field surrounding a vehicle traveling at 
hypersonic speeds provides a formidable task for computation. At the speeds encountered 
for a planetary entry, the problem is made more difficult by the presence of nonequilib- 
r ium real  gas effects. This report  develops a finite-difference method for computing the 
supersonic-hypersonic regions of steady, inviscid flows past two-dimensional and axisym- 
metr ic  bodies. 

Many methods have been formulated and used for nonequilibrium flow-field compu- 
tations varying from the accurate, but lengthy, method of characterist ics (refs. 1 to 3) and 
inverse blunt-body methods (ref. 4) to the gross,  yet simple, method of integral relations 
(refs. 5 to 7) and stream-tube techniques (ref. 8). In 1954 Lax (ref. 9) introduced a first- 
order-accuracy difference scheme for computing one-dimensional unsteady flow fields 
containing shock waves. Roberts (ref. 10) applied this method to spherical waves, and 



Bohachevsky e t  al. (ref. 11) used it to compute steady-state flow fields for  two and three 
dimensions by obtaining the asymptotic solution of the time-dependent flow. More 
recently, Lax and Wendroff (ref. 12) proposed a finite-difference scheme that is accurate 
to the second order. Burstein (ref. 13) used this technique to obtain steady flow fields as 
the asymptotic form of the unsteady flow, whereas Thommen and D'Attorre (ref. 14) 
applied the difference scheme to the steady-flow equations. 

Although the Lax-Wendroff method is accurate to the second order,  the numerical 
computations become prohibitive for  a real  gas. The numerical method presented here 
applies the basic difference scheme of the ear l ier  Lax method (ref. 9) to the steady-state 
flow-field equations. This method represents a good compromise between accuracy and 
numerical complexities. The governing partial differential equations a r e  first written in 
conservation (or divergence) form; that is, the coefficients of the derivatives a r e  all 
unity. The partial derivatives a r e  then replaced with finite-difference quotients, but in 
such a manner as to introduce implicitly an artificial viscosity. However, the artificial 
viscosity is due only to the finite-difference scheme employed and differs from that used 
by VonNeumann and Richtmyer (ref. 15). (VonNeumann and Richtmyer add a viscous 
pressure term to the static pressure in the differential equations before the difference 
equations a r e  formed.) As a consequence of the artificial viscosity effect, the computa- 
tions may proceed downstream of an initial data line as if no shock wave were present at 
all. The shock wave appears in the solution, however, not as a discontinuity but as a near 
discontinuity smeared over several  mesh spaces while the solution accurately gives the 
proper jump conditions across  the shock wave. 

In order to obtain good accuracy on the body surface, a different difference scheme 
is developed for the body points that is more accurate than the previously used extrapola- 
tion schemes (ref. 13) and reflection principles (refs. 11 and 13). The numerical results 
of the present method a r e  compared with those of the methods of characterist ics and 
integral relations for frozen flow over a cone-parabolic-arc-cylinder, vibrational non- 
equilibrium flow over a wedge, and chemical nonequilibrium flow of Lighthill's "ideal 
dissociating gas" over a wedge. The method presented herein is developed in more detail 
in reference 16. 
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C* 

SYMBOLS 

vector defined by equation (16) 

vector defined by equation (16) 

constant in dissociational ra te  equation 
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locally frozen speed of sound 

2(P - Pm3) 

p,v, 2 pressure coefficient, 

dissociation energy per molecule 

vector defined by equation (16) 

vibrational energy per unit mass  

function defined by equation (C2) 

function defined by equation (C3) 

static enthalpy per  unit mass  

total enthalpy per unit mass  

integer in flow equation; 0 for two-dimensional flow, 1 for axially symmetric 
flow 

body curvature 

Boltzmann constant 

length scale 

locally frozen Mach number 

number of increments in mesh system (see fig. 2) 

Avogadro's number 

pressure 

perpendicular distance from body axis 

universal gas constant 

t ime 

translational temperature 

velocity in x-direction 

magnitude of total velocity 
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V velocity in y-direction 

molecular weight of jth species wj 

distance along body surface from leading 
(see fig. 1) 

X 

Y distance normal to  body surface 

a atom mass  fraction 

r rate of -dissociation 

Y locally frozen ratio of specific heats 

6 y-position of shock wave 

characteristic dissociation temperature, D kg OD I 
0, characteristic vibrational temperature 

8 

A vibrational energy rate 

angle between body tangent and axis of symmetry 

scale factor in x-direction 

P locally frozen Mach angle 

Ax 

5 Cartesian coordinate along body axis 

P mass  density 

characteristic dissociation density PD 

7 vibrational relaxation time 

+ constant defined by equation (10) 

w1,w2,w3,04,w5 functions defined by equations (41) and (47) 

s-2 shock-wave angle 

Subscripts: 

A2 diatomic species 

e equilibrium conditions 
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F locally frozen value 

n,k spatial position, x = xo + n Ax, y = k Ay (see fig. 2) 

0 initial conditions 

00 undisturbed free-s t ream conditions 

Barred quantities are dimensionless as given by equation (7). Unbarred quantities 
a r e  dimensional, 

PROBLEM DEFINITION 

General Description 

The problem to  be studied is the numerical solution of the inviscid, steady super- 
sonic flow over two-dimensional and axisymmetric bodies. The gas model considered is 
a homonuclear, diatomic gas subject to  nonequilibrium vibrations and dissociation. 
Translation and molecular rotation modes are considered t o  be completely excited, and 
electronic excitation and ionization are neglected. 

The numerical technique for the flow-field solution is to replace the governing par- 
tial differential equations with finite-difference equations. Then, with known flow prop- 
er t ies  along an initial data line in the supersonic region, the downstream flow field is 
computed by marching forward in the 
streamwise direction. Since the numer- 
ical technique is restricted to hyperbolic 
equations, the flow field computed must 
remain supersonic. 

Basic Equations 

Figure 1 illustrates the geometry and 
coordinate system. For this body-oriented 
coordinate system, x is measured along 
the surface of the body, y is normal to sur-  
face, and the velocity components in these 
respective directions a r e  u and v. The 
basic flow equations a r e  written in conserva- 
tion (or divergence) form as (see ref. 16): 

x'y 1 9  1 I 
\ 

Y 
\ 

\ 

--. 
\ € , P  

Instantaneous center 
of curvature 

Figure 1.- Body-oriented coordinate system. 
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Continuity: 

x- momentum: 

y- momentum : 

Vibrational energy rate: 

Rate of dissociation : 

Energy: 
-2  - 2  - 

= Ht = Constant (6) g + u  + v  
2 

- 
where K = - is the body curvature, A, = 1 + K? is the scale factor in the 

x-direction, and j = 0 for two-dimensional body and j = 1 for axisymmetric body. 
The nondimensional vibrational energy is E,,, a! is the atom mass fraction, A is the 

da! dEv, and I' is the dimensional dissociational rate - 
dt * 

dimensional vibrational ra te  - 
All quantities a r e  nondimensionalized as follows (barred quantities a r e  nondimensional) : 

dz 

dt 

L Or 'J - -  x, y, x, y, or F = 
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The enthalpy and equation of state are ,  respectively, 

H = +[-. + (1 - a$Ev + CYSD 1 - 
2 

p = pT(1 + a$+ 

where 
-1 + =  RTOO 2 = [y 00 (1 + a,)Mg 

wA zv00 

The locally frozen ratio of specific heats is 

y=-  7 + 3a 
5 + a  

and the locally frozen Mach number is 

Vibrational Nonequilibrium Gas Model 

The vibrational nonequilibrium gas model is for a diatomic gas with no dissociation. 
Therefore, a! = 0 everywhere and the dissociational ra te  equation (eq. (5)) is not needed. 
The vibrational energy rate  and relaxation time used here are the same as those used in 
references 1 and 5; the vibrational energy rate is 

where the local equilibrium vibrational energy is 

and the vibrational relaxation time 7 is given by 

7p a exp (l.3965 T X 106)’/3 

where the temperature is in OK. 
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Lighthill Gas Model 

A convenient simplification is achieved when the gas model is reduced to Lighthill's 
ideal dissociating gas of reference 17. This gas model is used in this report for compar- 
ative purposes only. The essential features of the gas model are: 

(1) The vibrational energy always has one-half of i ts  fully excited classical value; 
that is, 

(2) The characteristic density of dissociation 

As a consequence of these simplifications, equation (4) is not required, the enthalpy 
p~ is considered to  be constant. 

given by equation (8) is reduced (for Lighthill gas) to  

and the locally frozen ratio of specific heats given by equation (11) is changed (for 

I Lighthill gas) to 

(14) y = -  4 + a  
3 

With the exception of equations (4), (8), and (ll), the flow-field equations given by equa- 
tions (1) to (12) a lso hold for the Lighthill gas. 

The dissociational rate equation 

which was used in references 3 and 7 (where C* is a constant) is also used herein. ~ 

Boundary Conditions 

Since the velocity at the boundary must be tangent to  the body surface, v = 0 at 
y = 0. The numerical technique developed here does not consider the shock wave as a 
boundary o r  a discontinuity. Therefore, there  are no boundary conditions t o  be satisfied 
at the shock wave since the initial data line extends into the free stream. 

METHOD FOR NUMERICAL COMPUTATIONS 

Let the flow field be divided into an orthogonal mesh system as shown in figure 2. 
If the mesh spacings Ax and Ay remain constant, the coordinates of the mesh point 
n,k are x = xo + n h t  and y = k Ay. Note, however, that the a r c  length from n,k t o  



Initial data line 

0-indicates mesh points used for 
staggered mesh 

E Body - axis 

Figure 2.- Mesh system. 

n+l,k is Ax Ax, whereas the linear length from n,k t o  n,k+l is Ay. (See fig. 3.) 
' In some applications Ax may vary with n. For these cases  

n 

i= 1 
x = XO + C ( A X ) i  

The numerical technique for the flow-field solution is to  replace the differential equations 
with finite-difference equations. Then, with known initial data along the mesh points at 
n = 0 (obtained from some other technique), new data are computed along the mesh points 
at n = 1. This technique is continued for increasing values of n. In this manner the 
flow-field properties are computed at the various mesh points throughout the supersonic 
portion of the flow field. Since the differential equations are hyperbolic, the ratio Ax/Ay 
is bounded. If this bound is exceeded, the numerical computations become unstable. The 
proper stability criterion is discussed subsequently. 

The system of partial differential equations, given by equations (1) to (5), may be 
written as one vector equation: 

abm 
a j ; a Y  
- + + dm =.O (m = 1, 2, 3, 4, 5) 
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where 

a5 = ala b5 = bla  

The difference scheme, suggested by Lax (ref. 9), replaces the partial derivative 
at the mesh point n,k with the modified forward difference quotient 

(%)n,k 

with the symmetric difference quotient 
n,k 

and replaces 

Since only the mesh points n,k+l and n,k-1 are involved at n for both of these dif- 
ference quotients, the te rm (dm) is replaced by the average value n,k 

With these substitutions the system of partial differential equations 

(m = 1, 2, 3,  4, 5) 

are replaced with 

for m = 1, 2, 3, 4, 5. In this manner (am)n+l,k may be evaluated in t e rms  of am, 
bm, and dm at the mesh points n,k+l and n,k-1. Therefore, if the quantities am 
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a r e  known at n = 0 and k = 0, 2, 4, . . ., the values of am can be determined at all 
points of the staggered mesh n = 1, 2, 3, . . . and k = 1, 3, 5, 7, . . . when n is odd; 
and k = 0, 2, 4, 6 when n is even. (See fig. 2.) 

If equation (17) is used for k = 0, then imaginary flow properties a r e  required at 
the mesh point n,-1 which is inside the body. Since the computational procedure cannot 
determine these properties at k = -1, a different finite-difference scheme is developed 
later for the body points. 

The significance of the finite-difference scheme employed here is more readily seen 
when equation (17) is rearranged as 

- (..i$- - ~ d m ) n , k + l  - 2Fm - AXdm)n,k + (am - Atdm)n,k-l ] (18) 

(A?) 2 A z  

The conventional manner of forming finite differences is to replace (2) with the 
forward difference quotient n,k 

( a d n + l , k  - (am)n,k 
A2 

to replace (2) with the symmetric difference quotient 
n,k 

(bm)n,k+l - (bm)n,k-l 
2 A7 

and to replace the second derivative pziam - ,ai-dml with 
L Jn,k 

Therefore, the differential equation that corresponds t o  the difference equation (17) using 
conventional difference quotients is 

This differential equation differs from that shown as equation (15) by the addition of the 
second derivative te rm on the right-hand side. In comparison with the momentum equa- 
tion for a viscous fluid (see ref. 18), the additional te rm in equation (19) is similar t o  part 
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of the viscous t e rms  in the viscous momentum equation. However, the "artificial" coef- 

ficient of viscosity k@! is not a function of the fluid properties, as it is in the viscous 
2 A z  

momentum equation, but is a function of the mesh spacing only. Also, as 
spacing approaches zero, this coefficient approaches zero. The effect of 
te rm involving the second derivative is designated in references 9 and 10 
viscosity." It tends t o  smooth out discontinuous and rapidly varying flow 
they arise. 

the mesh 
the additional 
as an "artificial 
variables when 

One such discontinuity that appears in the inviscid solution of supersonic flow over 
bodies is a shock wave. Normally, the shock wave is taken as a boundary, and the 
Rankine-Hugoniot equations specify the boundary conditions. However, a numerical solu- 
tion of the viscous Navier-Stokes equations yields a shock-wave structure in  which the 
fluid properties a r e  not discontinuous, but vary continuously over a narrow distance. 
(See ref. 19.) The introduction of "artificial" viscosity in equation (18) gives this same 
qualitative effect, but the shock-wave thickness predicted is too large because the viscos- 
ity effect is not real. A simple example of the numerical computation of the flow of a 
perfect gas through an oblique shock wave illustrates this point and is given in appendix A. 

An important feature of the present method is that shock waves a r e  not regarded as 
discontinuities and the numerical solution proceeds as if no such waves were present at 
all. However, the shock waves appear in. the final solution not as a discontinuity but as 
a near-discontinuity smeared over several  mesh spaces. As a result, there  are no 
boundary conditions to be satisfied at the shock wave itself; for some fluid problems this 
simplification is a significant one. Although the shock-wave thickness in the solutions 
is incorrect, the flow fields on both sides a r e  accurately described. (See the example 
in appendix A.) The success of the difference scheme presented here is due, in part, to  
the divergence form of the differential equations and, in part, to  the artificial viscosity 
effect. The difference scheme of equation (17) is accurate to  O(A22). (See ref. 16 for 
the details.) 

Stability Criterion 

Consider the two adjacent mesh points n,k+l and n,k-1 in a flow field. A s  has 
been shown, the flow properties at these two points a r e  used to  determine those at the 
point n+l,k. Since the numerical technique used here is restricted t o  supersonic flow, 
the mesh point n+l,k must lie within the Mach triangle about the points n,k+l and 
n,k- 1. (See fig. 3.) This criterion is the classical  Courant-Friedrichs- Lewy stability 
criterion (ref. 20) used by Lax (ref. 9) and Roberts (ref. 10). 

The Mach triangle is the triangle formed by the line joining n,k-1 and n,k+l, the 
left-running Mach line from n,k-1, and the right-running Mach line f rom n,k+l. As 
pointed out by Wood and Kirkwood (ref. 21), the appropriate Mach line fo r  a reacting gas 
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Right-running frozen Mach 
line from mesh point n, k+l 

Left-running frozen Mach 
line from mesh point n, k - l  k +  I 

k - l  m" 
Region permissible for mesh point 
n+l, k by stability criterion 

0 Mesh points already computed 
0 New mesh point i o  be compufed 

Figure 3.- Stability criterion. 

is that determined by the locally frozen Mach number; that is, 

(M E 1) (20) 1 s in  1-1 = - M 

where IJ. is the angle between the locally frozen Mach line and the streamline. There- 
fore,  in the Z,f coordinate system used here, the slopes of the frozen Mach lines are 
given by 

After considerable rearrangement, 

- 1 /a\ 

this equation becomes 

u y  

- 2  
%Ad* - -  

CF 
where 
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When L= 1, E) = fa, for v = 0, E)+ = +a, and E) is finite for V > 0, and 
CF f - 

(g) = -m and @)+ is finite for v < 0. Therefore, at least one of the Mach lines is 

parallel to the y-axis when = 1. This same result may also be deduced from the 

fact that the velocity component normal to  a frozen Mach line has the magnitude of the 
frozen speed of sound. 

- 

CF 

Equation (21) may be used to write the stability criterion as 

Therefore, in order to  have &/A7 finite and positive, it is necessary to  have 

Note that since 2 M, & > 1 is a more stringent requirement than M > 1. 
CF CF 

Individual Fluid Properties 

For  mesh points away from the body, k 2 1, equation (17) gives (am)n+l,k in 
t e rms  of the known properties at n,k+l and n,k-1. A method is given below whereby 
the individual fluid properties can be obtained from am. Since 

a3 = a l t  

a5 = ala! 

it is immediately evident that 
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a!= 3 
al 

The other properties a r e  more involved. The ratio 3 gives 
al 

o r  

- - -  
The E t e rm in this equation can be obtained as a function of 6, v, E,, and a! from 

the energy equation and the equation of state as 
P 

P -  7 + 3a! 7 + 3a! 
2(1 + a!) l+a! 

Substitute equation (28)  into equation (27)  to get 

,2 - 
Ht - (1 - ct)EVQ - GDQ - - 

6 + 2aii2 - si + 2 = 0  
7 + 3 a  al 7 + 3a! 

2(1 + a!) 

and, the solution of this quadratic equation is 

8(1  + a) (6  + 201) 
- a*{g) - ( 7 +  sa!)2 
U =  

2(6 + 201) 
7 + 3a! 

From a physical standpoint U must be real and single valued at every position in the 
flow field. Thus, the t e rm under the radical must be positive or zero, and the sign pre- 
ceding this t e rm must be appropriately chosen. To investigate these requirements, the 
restrictions necessary to make equation (30) an identity will  be determined. 

From equation ( 2 6 ) ,  
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and equation (28) yields 

Hence, the te rm under the radical in equation (30) becomes 

This relation shows that the te rm under the square root sign is always nonnegative. 
Since the nondimensional frozen speed of sound is 

equation (30) becomes 

- u -  -[15 7 +  + 3a a )y ii2 + 3 * p 5  7 + + 3a y)2)1'2 
U =  

If it is noted that 

and 

7 + 301 

equation (30) becomes an identity if the positive sign is chosen when 

CF-2 
1 - -  5 0  

- 2  U 

and the negative sign is selected for  
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E 2  
U -2  The stability criterion for supersonic flow (eq. (22)) requires that 1 - > 0. There- 

fore, the positive sign must be used in equation (30) and, as a result, 

The remaining flow properties may now be computed from equations (16) and (9) as 

- al p = -  
id 

and 

For  Lighthill's gas a4 is not required; hence, 

and 
"5 
al 

a=- 

and in a manner similar t o  that given previously 

7 + a  
4 + a  
- 

(for Lighthill gas). Then c, fi, and T may be determined from equations (32), (33), 
and (34). 

Body Points 

A s  previously mentioned, the finite-difference scheme of equation (17) can be used 
for  the body point n+l,O only if imaginary flow properties are known at the point n,-1 
inside the body. Since the computational procedure cannot determine the properties at 
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k = -1, these properties must be determined by an extrapolation scheme or reflection 
principle. Several extrapolation and reflection techniques (such as those in ref. 13) were 
tested in the computation of the frozen flow past a wedge (for which the exact solution is 
known) by the present method. However, the results showed that the properties computed 
at the body points by all these techniques were less  accurate than those computed by the 
method given herein. 

nt n,I 

0 Mesh points already computed 

o New body mesh point to be 
computed 

Range permissible 

stability criterion 

Figure 4.- Mesh system at  body surface. 

It was found that more accurate results were obtained when the properties at mesh 
points n-1,O and n,l were used t o  determine the properties at the body point n+l,O 
as illustrated in figure 4. The finite-difference scheme replaces ($)n,O by the sym- 
metrical difference quotient 

replaces (F)~,~ 
2 A? 

by the modified forward difference quotient 

and replaces (dm) by the average value 
n,O 
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With these replacements, the system of partial differential equations 

(m = 1, 2, 3, 4, 5) 

become 

for  m = 1, 2, 3, 4, 5. 

At first glance equation (37) appears to be insufficient because (dm)n+l,o and 

appear, and the properties at n+1,0 a r e  unknown. However, because of the (bm)n+l ,O 
coordinate system used, there are two simplifications which allow a solution to  be 
obtained. First, the m = 3 vector is not required because a3  = jjiiiGj and the boundary 
condition on the body requires that v ~ + ~ , ~  = 0 for all values of n; hence, a 
Second, since 

= 0. 
3),+1,0 

= 0 for m = 1, 2, 4, 5. With these simplifications, equation (37) (bm)n+l ,O = (bm)n- 1 ,o 
becomes 

for  m = 1, 2, 4, 5. 

For  mesh points on the body, equation (38) gives (am + AZdm)n+l,o in te rms  of 

the known properties at n,l  and n-1,O for m = 1, 2, 4, 5. Also, it has previously 
been shown that (a3)n+1,0 = 0 and (dl)n+l,o = 0. Explicit relations for the individual 

fluid properties can be obtained for a perfect (frozen) gas only, since d4 and d5 are 
ze ro  for these gases. 
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At the body surface, V = 0, 7 = 0, A, = 1, and d2 = -jp sin 8;  therefore, 

Substitute equation (28) for into this equation to  obtain b 
- 2  

w1u + w2fi + w3 = 0 

where 

1 
a 2  + M d 2  

"1 
w 2  = - 

2(1 + CY) w3 = Ht - (1 - a)EVJ/ - [- 
The solution of equation (40) for supersonic flow is 

Equation (42) gives an explicit relation for U on the surface for a perfect (frozen) gas 
since 

(Y = Constant 

and 
- 
E, = Constant 

for  a frozen gas, The other surface variables may be determined now from 

(a2 + AZd2) - ~ ( a l )  p =  
FJ - j AZ sin e 

(44) 
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and 

For  the nonequilibrium gas, a! and Fv a r e  not known and the quantities 

(am + =dm)n+l,o 
an iterative technique must be used; one such technique is described in appendix B. 

for m = 1, 2, 4, and 5 cannot determine them explicitly. Therefore, 

To illustrate the accuracy of the present method compared with the reflection prin- 
and M, = 6. The ciple, the frozen flow over a 40.02' wedge was  computed for y = 1.4 

reflection principle sets  

and uses equation (17) on the body 
surface. Figure 5 shows the density 
along the surface of the wedge. The 
superiority of the present method over 
the reflection principle is clearly evi- 
dent here. Actually, the reflection 
principle should be more accurate for 
a straight body than a curved body 
because it gives incorrect gradients 
normal t o  the surface of a curved body. 
(For instance, the reflection principle 
yields 3 = 0 on the surface, but the ay 
centrifugal effects make $ #  0 on 
a curved surface.) 

,j 

Exact solution 
o Present method 

5.11 
a Reflection principle - 

0 I a 
I 

4.81 I I I I I 
0 IO 20 30 40 50 

Surface mesh point, n 

Figure 5.- Density along wedge surface for frozen flw. M, = 6; 
y = 1.4; e = 40.024 For  the Lighthill gas, the equa- 

tion analogous to  equation (42) is 



and 

j A2 s in  0 
2(4 + a) P 

(4 7) 

The quantities 5, fi, and ?; may then be obtained from equations (43), (44), and (45), 
respectively . 

As shown in reference 22, the proper stability criterion for the body points, in 
supersqnic flow, is that the n+1,0 mesh point should not fall beyond the intersection of 
the right-running frozen Mach line, from n, l ,  with the body surface. (See fig. 4.) Equa- 
tion (38) is consistent with equation (17) in that it is accurate to  O(A%2). 

RESULTS 

The numerical technique developed herein is applied to  frozen flow over a cone- 
parabolic-arc-cylinder, vibrational nonequilibrium flow over a wedge, and flow of 
Lighthill's gas over a wedge. These results are compared with the methods of charac- 
ter is t ics  and integral relations. Additional resul ts  for  coupled nonequilibrium vibration 
and dissociation are given in reference 16. All the numerical computations were made on 
an electronic data processing system. 

A s  has been mentioned, the present method is applicable only to  flow regions where 
the local frozen Mach number is greater than unity. For the case of a pointed body, with 
an  attached bow shock wave, the entire flow field is generally supersonic. The flow in 
the vicinity of the nose may be approximated by using the frozen flow properties or by 
using the tip gradients derived for two-dimensional bodies in references 3, 5, and 23. 
This approximation gives the (initial) flow properties required for  the present method t o  
compute the entire flow field. 

When the flow over a blunted body is considered, the subsonic-transonic region in 
the vicinity of the nose must first be determined by Some other method, such as that of 
reference 4 or 6. Such results can then be used t o  establish the initial data line fo r  the 
present method, the solution continuing downstream in the supersonic flow region over 
the body. 
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Frozen Flow Over a Cone-Parabolic-Arc-Cylinder 

This example illustrates the accuracy of the present method for supersonic flow 
(M, = 2, y = 1.4) over an axially symmetric body with a discontinuous curvature, but 
having a continuous slope. Figure 6 shows the body shape. The cone-parabolic-arc 
junction lies at = 0.05, and the parabolic-arc-cylinder junction lies at = 0.5. Note 
that the tip of the cone is not at = 0, but at = -0.002777. 

The initial data line 
was chosen t o  be the line 
normal to  the surface at the 
cone - parabolic - a r c  junc - 
tion. Since the flow is still 
conical along this line, the 
Taylor-Maccoll cone solu- 
tion (ref. 24) could be used 
for the flow properties. 
Three mesh points were 
chosen inside the shock 
layer: k = 0 on the surface, 
k = 2 midway between the 
surface and the shock wave, 
and k = 4 just aft of the 
shock wave. The other 
points on the initial data line 

*a 

- Method of characteristics 

- . I 1  I I I I I 1 0 .2 .4 .6 .0 I .o 1.2 
E 

- 
7 = 0.08333 

- 5  - 

(k = 6, 8, 10, . . .) were in 
the undisturbed f ree  stream. Figure 6.- Var iat ion of surface pressure coefficient w i t h  axial distance for f rozen flow past a 

cone-parabolic-arc-cylinder. M, = 2; y = 1.4; C x  = 2(p - P"! 

With hy = 0.0005946i PJL 
~ .. 

A? = 0.00459 for 5 0.5, 
and AZ = 0.0055 for c> 0.5, the flow field was computed as far as I =  1.05. Since AV 
remains constant and the distance between the body and the shock wave increases with F, 
the number of mesh points inside the shock layer becomes much greater than three as the 
computations proceed downstream. The time required by the computing machine for this 
flow field was 2.2 minutes. 

The pressure coefficient along the body surface is plotted in figure 6 along with that 
given by the (standard) method of characteristics. This figure shows good agreement 
between the two methods. 
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Nonequilibriuni Flow Over Wedges 

It is well-known that for  the supersonic, inviscid flow of a frozen gas past a wedge, 
the attached shock wave is straight and the fluid properties are constant between the body 
surface and the wave. The same qualitative results also hold for  a gas in equilibrium; 
however, in this case, the shock wave is closer t o  the body and the constant fluid proper- 
ties are different from those of frozen flow. In particular, the equilibrium pressure and 
temperature are less  than the corresponding properties for  frozen flow. 

When the conditions are such that nonequilibrium effects must be considered, the 
flow field is complicated. At the tip of the wedge the flow is frozen since it has just  
passed through the infinitesimally thin shock wave and has not had t ime to  relax. The 
translational and rotational energy modes reach equilibrium almost immediately; however, 
the vibrational and dissociational energies require a finite t ime to  reach equilibrium. 
For an  undissociated free s t ream, the vibrational energy and the degree of dissociation 
increase along the surface of the wedge. These conditions in turn decrease the tempera- 
ture  and pressure,  but increase the velocity and density. The shock wave is inclined at 
the angle for frozen flow at the tip, but bends downward and approaches the equilibrium 
angle far downstream. As the flow along the surface achieves an equilibrium condition 
downstream, the pressure is the same as that for the equilibrium wedge solution; how- 
ever, the same is not t rue for the other flow variables (ref. l). Downstream of the nose, 
three regions are observed in the profiles of properties between the body and the shock 
wave. Near the surface there exists an  entropy layer since the streamlines passed 
through the steeper shock wave near the tip of the wedge. In the vicinity of the shock 
wave, the flow properties are close to  being frozen since they have just passed through 
the shock wave and have not had t ime to  relax. Between these two regions is a region 
which is essentially in equilibrium. This portion of the flow field has passed through the 
shock wave further upstream and thus has had t ime t o  relax to  the equilibrium conditions. 

The wedge was chosen, both fo r  simplicity and for comparison with other methods, 
in order to investigate the use of the present method for  nonequilibrium flows. For the 
initial data line, a line normal to  the surface and at a finite distance from the t ip has been 
used for each case. The flow properties along this line have been determined (approxi- 
mately) by using the exact wedge-tip gradients given in appendix C. 

It was found that an initial data line with only two points between the wedge and the 
shock wave produced good results. In each case these two points were chosen as k = 0 
at y/6 = 0, and k = 2 at y/6 = 2/3. The remainder of the initial data line 
(k = 4, 6, 8, . . .) values were free-s t ream quantities. 
f rom the t ip  xo determines the spacing ay, whereas A? is limited by the stability 
criterion. Care must be exercised to  insure that & remains small  compared with the 
relaxation lengths, 

The distance of the initial data line 
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Since the computations extend through the shock wave, the f ree  stream, as well  as 
the shock layer, must be considered in determining the stability criterion. In all the 
examples considered, the free-stream stability criterion was more stringent than that of 
the shock layer. This difference is due to  the fact that the free-stream velocity is 
inclined at the wedge half-angle 0 to  the coordinate system. 

As noted by Lax (ref. 9) and demonstrated in appendix A, the shock waves are nar- 
rowest when A% is chosen as large as possible but still satisfies the stability criterion. 
Therefore, in the examples given, the largest value of AZ consistent with the stability 
criterion was  used. It was  found that this value w a s  always small  compared with the 
relaxation lengths of vibration and dissociation. 

Vibrational nonequi1ibrium.- Sedney et al. (ref. 1) and South (ref. 5) have solved the 
vibrational nonequilibrium flow field over a wedge by the methods of characteristics and 
integral relations, respectively. The following case (designated case I) was chosen to 
compare with the method of characteristics: 

Case I: The gas is N2 and 

T, = 300' K 

M , = 6  

e = 40.02O 

(Ev), = O 

All lengths were nondimensionalized by 

Therefore, the proportionality constant in the relation for 7 does not affect the nondi- 
mensional variables. 

In order  t o  determine the effect of the mesh spacing, two separate computations were 
performed with initial data lines at so = 0.035 and at so = 0.1. Although & and A? 
were smaller for the case with Xo = 0.035 than those for 2, = 0.1, the ratio &/A? 
was the same for both cases. The flow field was computed downstream to  X = 4 in each 
case. Figures 7, 8, 9, and 10 show the variation of 5, T,  EV, and U, respectively, 
along the wedge surface. Agreement with the method of characteristics is very good, 
except near the starting point. Here the pressure and velocity, in particular, deviate from 

- 
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Figure 7.- P ressu re  along wedge surface for case I. 

the correct solution; however, these quantities quickly recover as the calculations are 
made downstream. The amount of deviation increases with increasing mesh size. On the 
other hand, figures 8 and 9 show very little deviation in the values of T and Ev from 
the characteristics solution. 

- 

Figures 11 and 12(a) give the 0 and profiles normal to  the surface at X = 4. 
Of particular interest a r e  the results in the vicinity of the shock wave where the values 
of 0 and T, in the shock layer, drop to  f ree-s t ream values over a few mesh points; 
thus the shock wave is smeared over these points. Also, these figures show that a more 
definitive shock is produced by decreasing the mesh spacing (while &/A7 is held 
constant). (It is interesting to  note that the computational t ime was 8.8 minutes for  
go = 0.035 and only 2.0 minutes for  go = 0.1.) 
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Figure 8.- Temperature along wedge surface for case I. 

Figure 12(b) shows a portion of the temperature profile at an expanded scale. This 
figure illustrates the entropy layer near the surface, a region of near-equilibrium, and the 
nonequilibrium region near the shock wave proper. Also, there is a significant difference 
between the actual shock location and that for  frozen flow. This difference is due to  the 
fact that the shock wave has the frozen slope at the tip, but bends downward and approaches 
the slope of an  equilibrium flow as Z increases. (See ref. 1.) 

Lighthill's ideal dissociating gas.- Capiaux and Washington (ref. 3) have used the 
method of characterist ics to  compute the nonequilibrium flow field over a wedge for 
Lighthill's ideal dissociating gas. Their technique, however, differs from that used by 
Sedney in that they used the s t ream function and distance perpendicular to  the wedge axis 
as independent variables. Newman (ref. 7) also solved this problem by using a modified 
method of integral relations. The following case (designated case 11) was computed by the 
present method and corresponds to  case I in reference 3: 
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Figure 9.- Vibrational energy along wedge surface for case I. 

Case 11: The gas is oxygen and 

k =  0.811 X 10 8 
p03 

Mm = 32 

= 10-10 
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Figure 11.- Pressu re  prof i le normal to wedge surface at i = 4 for case I. 
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Figure 13.- Variation of surface pressure with axial distance for case I I. 
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Figure 14.- Variation of surface temperature with axial distance for case I I .  
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All lengths were nondimensionalized by the same length scale as that used in reference 3, 
that is, 

In this manner the numerical value of C* does not affect the nondimensional 
Note, however, that reference 7 used a different length scale. 

properties. 

In order t o  obtain good accuracy near the t ip of the wedge, the problem w a s  solved 
in two parts. First, with an initial data line at 
X = 4 x 10-3. By using the results already computed at X = 1.18 x 
line (of two points in the shock layer) was  used to  carry the solution t o  f = 0,111. The 
second solution partly overlapped the first ;  therefore, the fluctuations which occur near the 
starting point would not be present in the region 4 X S X 5 0.111. These resul ts  a r e  
plotted in figures 13, 14, and 15 and show the variation of p, T, and a, respectively, 
along the surface. It should be noted that reference 3 measures X along the axis of 
symmetry, whereas the present f is along the surface. Therefore, f cos 8 in this 
report corresponds to  X in reference 3. 

Zo = the solution was  carried out t o  
a new initial data 

- 

Figure 13 shows that the deviation of fi, near the starting point, is more pronounced 
than in the previous example for vibrational nonequilibrium. However, it should be noted 
that f cos 8 is plotted on a logarithmic scale; hence, this deviation extends over a very 
small  distance on a linear scale. For  Z cos 8 > 2 X the present method and that of 
references 3 and 7 all disagree on the surface pressure.  It is not presently known why 
these results differ, or which is the more correct solution. 

Figure 14 shows that the present method and that of reference 7 give the same 
results for along the surface. The method of reference 3, however, differs from 
these two methods for 2 cos 8 > 3 X 

results for a, as shown in figure 15. (The total computational time for  the present 
method was 16.2 minutes.) 

All three methods give essentially the same 

DISCUSSION 

The comparisons given in figures 5 t o  15 show that the present method correctly 
calculates the flow field over bodies except near the initial data line. At that point, 
unrealistic deviations appear in the flow properties on the body but a r e  quickly damped 
out. It was found that these deviations still occurred even when as many as 20 points were 
used on the initial data line between the body and the shock wave. The only difference was 
that the deviations started at a position downstream where the first mesh point outside the 
shock wave on the initial data line influences a body point. It is believed that these 
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deviations a r e  caused by using free-s t ream properties at one mesh point, and shock prop- 
erties at the mesh point adjacent to  it on the initial data line. This procedure causes a 
weak disturbance to  propagate down to the body, and the boundary conditions cause the sur -  
face properties to deviate from the correct solution. When other types of coordinate sys- 
tems  and schemes for computing the body points were investigated, the deviations near the 
initial data line were greater than those of the present method. Also, it was  mentioned 
previously that the y-momentum equation was not used at the surface because it is not 
needed. (The boundary condition specifies that v = 0 on the surface.) Upon investi- 
gating the computed flow fields, it was found that the y-momentum equation was not satis- 
fied at  the surface in the regions where these deviations occurred. However, downstream 
where the deviations were damped out, it was found that the y-momentum equation was  
satisfied at the surface. The present method could be altered t o  satisfy simultaneously 
all the equations and boundary conditions on the surface if Ai? was made a variable for 
each step in the computational procedure. However, this procedure increases the com- 
plexity of the method manyfold and may require computational t imes comparable with the 
method of characteristics. 

Several investigations were performed t o  determine the effect of using different 
values of the rat io  AZ/AY. When this ratio was greater than that given by the stability 
criterion, the computed flow properties became unstable after only a few mesh spaces 
downstream of the initial data line. However, for  values of Ax/Ay consistent with the 
stability criterion, more accurate results were always obtained the closer the mesh 
system followed the characteristics. This result is illustrated in appendix A. 

The staggered mesh system that is used fo r  the finite-difference scheme has the 
decided advantage that it requires only half as many mesh points as an  unstaggered sys- 
tem and yet it gives the same accuracy. This system reduces both the computing machine 
D L U L 4 5 G  -+----A upaL&u ---nnc - - A  UIIU +ha C A . ~  finmndatinnnl u v A A A r  -_-______ time _ _ _ _ _ _  by a factor of 2. The present method also has 
the advantage of using a mesh system that is fixed, whereas the method of characteristics 
must compute its mesh points. Therefore, the present method requires less computa- 
tional t ime than the method of characteristics. 

The resul ts  obtained show that the present method gives good accuracy even for a 
large mesh scale.  For  the flow past a wedge, only two points were used inside the shock 
layer for  the initial data line. The downstream profiles of the flow properties across  the 
shock layer show that the present method gives better accuracy than the method of integral 
relations. If greater accuracy is desired in the present method, an extrapolation proce- 
dure such as described by Roberts (ref. 10) can be used. 

In addition to the frozen flow past axially symmetric bodies, the present method has 
a l so  been applied t o  nonequilibrium flows over cones. However, since there  are no exact 
expressions for the cone tip gradients like those for wedges, the initial data line was  
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composed of the frozen cone solution. A s  a result, the solutions were not very accurate 
for  the mesh spacings used to  date. Reference 2 a l so  encountered considerable difficulty 
in the computation of nonequilibrium flows over cones by the method of characteristics. 
In reference 2 it was found that a much smaller  mesh spacing w a s  needed for  cones than 
for wedges. It is believed that accurate, nonequilibrium cone solutions can be obtained 
with the present method if a very small  mesh spacing was used, or if the cone tip gradi- 
ents were known. 

Method of characteristics (ref. 3) 
- _ _ _ _  Method of integral relations (ref. 7 )  

o Present method 

.- 

3i cos 8 

Figure 15.- Variation Of surface atom mass fraction with axial distance for case I I .  

CONCLUSIONS 

The finite-difference method developed by P. D. Lax for  unsteady flows is applied 
to the steady-state equations for  the supersonic region of inviscid flows past two- 
dimensional and axisymmetric bodies. A diatomic gas subject to  nonequilibriuni vibra- 
tions and dissociation is considered. A s  a consequence of Lax's finite-difference scheme, 
an artificial viscosity is implicitly introduced. This scheme allows the computations to  
proceed downstream of an initial data line as if no shock wave were present a t  all. The 
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shock wave appears in the solution, however, smeared over several  mesh spaces while it 
accurately gives the proper jump conditions across the shock. As a result of the applica- 
tion of this method, the following conclusions can be drawn: 

1 .  The finite-difference method developed herein is applicable t o  the solution of the 
supersonic-hypersonic flow fields past two-dimensional and axisymmetric bodies. 

2. The numerical results show that the present method compares favorably with the 
results obtained by the methods of characteristics and integral relations for both perfect- ~ 

l and real-gas flow fields. 
3. The new difference scheme developed for the body points is more accurate than 

~ 

extrapolation schemes and reflection principles previously used. The success of this 
difference scheme is dependent on a body-oriented coordinate system. 

I 4. The staggered mesh system has the advantage of reducing the computations 
required for  an  unstaggered mesh system without sacrificing accuracy in the results. 

5. The closer the mesh system approaches the characteristics network, the more 
accurate the results. 

6. The present method is sufficiently accurate to yield better profiles of properties 
across  the shock layer than the method of integral relations, yet it is simple enough t o  
require less  t ime for machine computations than the method of characteristics. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 21, 1965. 
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APPENDIX A 

FROZEN FLOW THROUGH AN OBLIQUE SHOCK WAVE 

This example illustrates the application of the present method fo r  the computation 
of a steady flow field without a boundary and is similar t o  the computations by Lax 
(ref. 9) for unsteady flow. This case is fo r  an oblique shock wave ( s 1 ~  = 30') positioned 
in a free s t ream of M, = 3 and y = 1.4. The x-axis is parallel t o  V,, and the y-axis 
is perpendicular to  V,. Since there is no boundary, the initial data line (n = 0) consists 
of the free-stream properties at k = 1, 3, 5, 7, . . . and the frozen shock properties at 
k = -1, -3 ,  -5, -7, . . . and places the shock wave at k = 0 on the initial data line. The 

.22 

.20 

. I  8 

. I 6  

. I4  

- 
P 

. I 2  

. I O  

.08 

J u  
0 

n- 
a 

0 

A 
- EXACT SOLUTION 

A 

0 

0 Present method, 

AY max 
Present method, 

0 

A 

A 
- *  - 

T 
I 06 

Y / X  

Figure I&- Pressure profile through an oblique shock wave at n = 49 for frozen flow. 
M, = 3; RF = 30'; = 1.4. 
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APPENDIX A 

present method has been used t o  compute the downstream flow field for three values of 
Ax/AY. From the stability criterion, 

= cot[lt.n-l@Fl + .] = 1.2910 
min 

Figure 16 shows the pressure profiles computed at n = 49. This figure illustrates that 
the profile through the shock wave is qualitatively similar to those obtained experimen- 
tally in reference 19. It is a lso  seen that the computed shock wave is narrowest when 

a conclusion noted by Lax in reference 9. The for  this phenomenon 
is that the "artificial" coefficient of viscosity as &/A7 
e = (%)ma' 

increases (A? being held constant). 
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APPENDIX B 

BODY POINTS FOR NONEQUILIBRIUM FLOW 

The numerical scheme formulated for the body points computed am + A2dm for 
m = 1, 2, 4, and 5 at the new mesh point n+1,0 from the known properties at n , l  and 
n-1,O. For nonequilibrium flow cy and Ev are not known at n+1,0 and, hence, an 
iterative technique must be employed to  determine the individual fluid properties from 
(am + AZdm)n+l,o. The steps in this method are :  

(1) Assume 

and 

and 

(2) Compute (Ev) and from n+1,0 

(3) Compute iin+1,o from equation (42), ijn+l,o from equation (43), f in+l ,O from 
equation (44), and Tn+1,0 from equation (45). 

(4) By using the properties computed in steps (2) and (3), compute new values of 
from equation (16). (d4)n+1,0 and (d5)n+1,0 

repeat steps (2) t o  (4) until 
percent. 

and (ds>n+l ,O' (5) By using the new values of (d4)n+1,0 
the temperature found in step (3) differs from its previous value by less than 
Convergence usually requires less than five iterations. 
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APPENDIX C 

WEDGE-TIP GRADIENTS 

Exact expressions for the wedge-tip gradients have been derived by Sedney et  al. 
(ref. 1) and South (ref. 5) for vibrational nonequilibrium, and by Capiaux and Washington 
(ref. 3) for Lighthill's ideal dissociating gas. South's derivation gives the results in a 
form suitable for obtaining the initial data line in the present method. Therefore, the 
results given in this appendix were obtained in  the same manner as outlined in appen- 
dixes A and C of reference 5 but were extended to include dissociation. 

For frozen shock-wave relations, 

then 

and 

Define F and G as 

F = Mm2sin2WF 

2(F - 1 
= (y" + l)M),2 
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APPENDIX C 

When derivatives of equations (C5), (C6), and (C7) are taken with respect to  S ~ F ,  

6 
L' 

With 6 defined as the y-position of the shock wave and 6 = - the wedge-tip gradients 
are 
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APPENDIX C 

By using these t ip gradients and neglecting second and higher order terms,  the flow prop- 
er t ies  across  the shock layer at the distance go (n = 0) from the t ip may be written as 

and 

- 
By using these properties, T0,k may be obtained from the energy equation and then 
Po,k from the equation of state. Since + = tan(a - e ) ,  the shock position 5 at iio 

- 

is (third and higher order t e rms  being neg 7 ected) 

When Lighthill's gas is considered, the only changes required a r e  that equations (Cl)  and 
(C13) be replaced by 

(C25) 
4 +cy, 

Y ,  = - 3 

and equations (C17) and (C22) a r e  not needed. 
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